Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37942872

RESUMO

We study phase equilibria in a minimal model of charge-regulated polymer solutions. Our model consists of a single polymer species whose charge state arises from protonation-deprotonation processes in the presence of a dissolved acid, whose anions serve as screening counterions. We explicitly account for variability in the polymers' charge states. Homogeneous equilibria in this model system are characterised by the total concentration of polymers, the concentration of counter-ions and the charge distributions of polymers which can be computed with the help of analytical approximations. We use these analytical results to characterise how parameter values and solution acidity influence equilibrium charge distributions and identify for which regimes uni-modal and multi-modal charge distributions arise. We then study the interplay between charge regulation, solution acidity and phase separation. We find that charge regulation has a significant impact on polymer solubility and allows for non-linear responses to the solution acidity: Re-entrant phase behaviour is possible in response to increasing solution acidity. Moreover, we show that phase separation can yield to the coexistence of local environments characterised by different charge distributions.

3.
Bull Math Biol ; 85(5): 38, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991173

RESUMO

Tumour spheroids have been the focus of a variety of mathematical models, ranging from Greenspan's classical study of the 1970 s through to contemporary agent-based models. Of the many factors that regulate spheroid growth, mechanical effects are perhaps some of the least studied, both theoretically and experimentally, though experimental enquiry has established their significance to tumour growth dynamics. In this tutorial, we formulate a hierarchy of mathematical models of increasing complexity to explore the role of mechanics in spheroid growth, all the while seeking to retain desirable simplicity and analytical tractability. Beginning with the theory of morphoelasticity, which combines solid mechanics and growth, we successively refine our assumptions to develop a somewhat minimal model of mechanically regulated spheroid growth that is free from many unphysical and undesirable behaviours. In doing so, we will see how iterating upon simple models can provide rigorous guarantees of emergent behaviour, which are often precluded by existing, more complex modelling approaches. Perhaps surprisingly, we also demonstrate that the final model considered in this tutorial agrees favourably with classical experimental results, highlighting the potential for simple models to provide mechanistic insight whilst also serving as mathematical examples.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Modelos Biológicos , Conceitos Matemáticos , Modelos Teóricos
4.
J Theor Biol ; 556: 111248, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36150537

RESUMO

We present a mathematical model that describes how tumour heterogeneity evolves in a tissue slice that is oxygenated by a single blood vessel. Phenotype is identified with the stemness level of a cell and determines its proliferative capacity, apoptosis propensity and response to treatment. Our study is based on numerical bifurcation analysis and dynamical simulations of a system of coupled, non-local (in phenotypic "space") partial differential equations that link the phenotypic evolution of the tumour cells to local tissue oxygen levels. In our formulation, we consider a 1D geometry where oxygen is supplied by a blood vessel located on the domain boundary and consumed by the tumour cells as it diffuses through the tissue. For biologically relevant parameter values, the system exhibits multiple steady states; in particular, depending on the initial conditions, the tumour is either eliminated ("tumour-extinction") or it persists ("tumour-invasion"). We conclude by using the model to investigate tumour responses to radiotherapy, and focus on identifying radiotherapy strategies which can eliminate the tumour. Numerical simulations reveal how phenotypic heterogeneity evolves during treatment and highlight the critical role of tissue oxygen levels on the efficacy of radiation protocols that are commonly used in the clinic.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Modelos Teóricos , Fenótipo , Oxigênio
5.
J Theor Biol ; 545: 111104, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337794

RESUMO

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.


Assuntos
Hipóxia , Oxigênio , Hipóxia Celular/fisiologia , DNA/metabolismo , Humanos , Modelos Teóricos , Oxigênio/metabolismo
6.
J Theor Biol ; 527: 110792, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34087269

RESUMO

In cancer, treatment failure and disease recurrence have been associated with small subpopulations of cancer cells with a stem-like phenotype. In this paper, we develop and investigate a phenotype-structured model of solid tumour growth in which cells are structured by a stemness level, which varies continuously between stem-like and terminally differentiated behaviours. Cell evolution is driven by proliferation and death, as well as advection and diffusion with respect to the stemness structure variable. Here, the magnitude and sign of the advective flux are allowed to vary with the oxygen level. We use the model to investigate how the environment, in particular oxygen levels, affects the tumour's population dynamics and composition, and its response to radiotherapy. We use a combination of numerical and analytical techniques to quantify how under physiological oxygen levels the cells evolve to a differentiated phenotype and under low oxygen level (i.e., hypoxia) they de-differentiate. Under normoxia, the proportion of cancer stem cells is typically negligible and the tumour may ultimately become extinct whereas under hypoxia cancer stem cells comprise a dominant proportion of the tumour volume, enhancing radio-resistance and favouring the tumour's long-term survival. We then investigate how such phenotypic heterogeneity impacts the tumour's response to treatment with radiotherapy under normoxia and hypoxia. Of particular interest is establishing how the presence of radio-resistant cancer stem cells can facilitate a tumour's regrowth following radiotherapy. We also use the model to show how radiation-induced changes in tumour oxygen levels can give rise to complex re-growth dynamics. For example, transient periods of hypoxia induced by damage to tumour blood vessels may rescue the cancer cell population from extinction and drive secondary regrowth.


Assuntos
Neoplasias , Variação Biológica da População , Hipóxia Celular , Humanos , Hipóxia , Neoplasias/radioterapia , Células-Tronco Neoplásicas , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...